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Abstract. This paper is a sequel of a previous one (Scalar mesons in a chiral quark model with glueball,
Eur. Phys. J. A 8, 567 (2000)) where an attempt to construct an effective U(3) x U(3)-symmetric meson
Lagrangian with a scalar glueball was made. The glueball was introduced by using the dilaton model on
the base of scale invariance. The scale invariance breaking because of current quark masses and the scale
anomaly of QCD, reproduced by the dilaton potential, was taken into account. However, in the previous
paper, the scale invariance breaking because of the terms like hwﬁ% and ho32, where ¢o and & are the
pseudoscalar and scalar isosinglets, was not taken into account. These terms are produced by the part of
the 't Hooft interaction that is connected with gluon anomalies. Allowing for the scale invariance breaking
by these terms has a decisive effect on the quarkonium-glueball mixing and noticeably changes the widths
of glueball strong decays. Taking account of this additional source of the scale invariance breaking and its
implications are the subject of the present work. It is also shown that in the decay of a glueball into four
pions, the channel with two p-resonances dominates.

PACS. 12.39.Ki Relativistic quark model — 12.39.Mk Glueball and nonstandard multiquark/gluon states

— 13.25.-k Hadronic decays of mesons — 14.40.-n Mesons

1 Introduction

In our previous work [1], an effective meson Lagrangian
including a scalar glueball field was derived from a chi-
ral quark Lagrangian of the Nambu—Jona-Lasinio (NJL)
type. The glueball was introduced into the effective meson
Lagrangian by using the dilaton model [2]. This allowed us
to construct an effective meson Lagrangian which is scale-
invariant except for the scale anomaly of QCD reproduced
by the dilaton potential and the terms with current quark
masses, in accordance with the QCD Lagrangian!. How-
ever, in [1] we did not take into account another source of
the breaking of scale invariance. Indeed, there are terms
in the effective Lagrangian that are connected with gluon
anomalies and which are produced by the 't Hooft interac-
tion. They describe the singlet-octet mixing among scalar
and pseudoscalar mesons and have the following form [3,
4]:

Lan(c_ra ¢) = 7h¢¢(2) + ha‘a—(2)7 (1)

where ¢ and 59 ((Gg) # 0) are pseudoscalar and scalar
meson isosinglets, respectively, and hg, h, are constants;

b0 = \/2/30y —\/1/30s, 50 = \/2/3G, —\/1/35s, where

# e-mail: volkov@thsuni. jinr.ru

! Note that in [1] there was a wrong sign at the last term
in formula (43), which led to incorrect estimates for the decay
widths of the scalar glueball.

¢y and 7, ((04) # 0) consist of u-quarks and ¢g, 75
({(Gs) # 0) of s-quarks.

When constructing a scale-invariant effective Lagran-
gian with dilaton fields, these terms require a special treat-
ment taking into account the breaking of scale invariance.
Note that the coefficients hy and h, are determined by
two different interactions: the 't Hooft interaction and
the standard NJL four-quark interaction; and the dila-
ton field should be inserted into them by using a special
prescription (see below sect. 2). Moreover, as can be antic-
ipated, it turns out that these terms determine the most
of quarkonia-glueball mixing.

The structure of our paper is the following. In sect.
2, a chiral quark model of the NJL type with the six-
quark ’t Hooft interaction is bosonized to construct an
effective meson Lagrangian. The meson Lagrangian is ex-
tended by introducing a scalar glueball as a dilaton on
the base of scale invariance. The gap equations, the di-
vergence of the dilatation current and quadratic terms of
the meson Lagrangian are derived in sect. 3. The numeri-
cal estimates of model parameters are given in sect. 4. In
sect. b, the widths for the main modes of strong decays
of scalar isoscalar mesons are calculated. The discussion
over the obtained results is given in sect. 6.
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2 Lagrangians

Let us show how the effective meson Lagrangian looks
when all three sources of scale invariance breaking men-
tioned above are taken into account. Recall that the orig-
inal effective U(3) x U(3) quark Lagrangian has the fol-
lowing form (see [1]):

L = Ly + Len, (2)
9

Z qTaq

Lin = —K {det[g(1 + ’Ys) q) +det[g(1 —s)ql},  (4)

Lo, = G(i0 — m° + (7iv5709)?]s (3)

,_.

where ¢ and ¢ stand for u, d, and s quark fields; m° is
a current quark mass matrix with diagonal clements: mY,
mG, m% (m% ~ mY). The matrices 7, are related to the

Gell—Mann A\, matrices as follows:
(a=1,..,7), 78=(V2\o + As)/V3,
7o = (=Xo + V2Xs)/ V3, (5)

Here Ao = 4/2/3 1, with 1 being the unit matrix. The
term Lyjr, is the standard U(3) x U(3)-symmetric NJL
Lagrangian with four-quark vertices, and Ly is the six-
quark 't Hooft interaction.

It is convenient to use an equivalent form of Lagrangian
(2) containing only four-quark vertices whose interaction
constants take account of the 't Hooft interaction. Using
the method described in [1] and [5-7], we obtain

Ta = g

9
316 (@raa) (amva)

a,b=1

L =q(id —

N | —

q+

+G ) (G5740) (T579)], (6)

where
o = ol = )
Gy =G4 =6l =G
G = G FaKkm I (my),

=G+ 4Km I (my),

=G +4Km, I (m,),
Gy =G

G =G = £4V2Km, I (my),

Gl(l?:() (a#b; ab=1,...,7),
GF =Gy =6 =6y =0 (a=1,...1, (V)

and mY is a diagonal matrix composed of modified current
quark masses

—0
m’LL

= mg — 32Kmumslf](mu)lfl(ms), (8)
0

mo = m? — 32Km2 I} (m,)?, 9)

introduced here to avoid double counting of the 't Hooft
interaction in gap equations (see [1,5]). Here m,, and ms
are constituent quark masses and the integrals

N. [, 0042 —k?)
<%>/dWM+mw“

IA(ma) = (10)
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where n = 1,2 and a = wu,s, are calculated in the
Euclidean metric and regularized by a simple O(4)-
symmetric ultraviolet cut-off A.

After bosonization of Lagrangian (6) and taking into
account the spontaneous breaking of chiral symmetry
(SBCS) (see, e.g., [1,5]) we obtain

E(CT, ¢) = LG(07 ¢)
9
—i Trln {ié—m+§:mga(o—a + iﬁ%%)} =

a=1

Lkin (07 ¢) + LG (0’, (b) + Ll—loop(oy ¢)7

9 9
0= OuTay D= PuTa
a=1 a=1

Note that (o) = (05) = 0 (0, = 08 and o5 = 09) unlike
7, and 7 introduced after the formula (1) to define &y.
The fields &, and 5 are connected with o, and o4 by the
relations

(11)

(12)

-0 ~0
_ My, — T, _ ms — 1M,
Oy =0y — —— 0s =05+ —F=—), 13
7 N (13)
while (7,) =0, (a=1,...,7).
The term Lyin (0, ¢) contains the kinetic terms
12
Lkin(a7 (b) = 5 Z ((ayaa)z + (811(;50,)2) ’ (14)
a=1
and the term Lg(o, ¢) is
LG(U ¢) =
1
5 Z 9a0Oa (G( )) Ib0b
ab 1
7 < -1
_Z (+) —
; a; 900 (GT)) v,

- Z JaOa— ua+ua)<G( ) (gv0 — 116+ iy
ab 1

25 gu6u (69) it
b=1

a,

(15)

Here we introduced, for convenience, the constants u, and
iQ defined as follows: p, =0, (a=1,...,7), ug = M,
o = —my/v2 and i = 0, (a=1,...,7), i = m,
i9 = —mY/v/2. The term Li-jp0p(0, @) is the sum of one-

loop quark contributions?:

LPMWOL¢r=ul—MngH%nwo+2¢Uf0nxa?+Z¢%

[m o2 —m?o?® + mgo(o® + Z¢?)

L (02 + 26V - 0.6)|. (16)

2 Here we left only the diverging parts of the quark loop
diagrams (see [8]).

g
~2lm.o)-lo. - -
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The Yukawa coupling constants g, describing the in-
teraction of quarks and mesons appear as a result of renor-
malization of meson fields (see [1,8] for details):

91 =95 =095 =93 = g5 = [AI{(m,)] ",
9 = g2 = g8 = g% = [AI3 (mu, ms)] 71,
g5 =92 = A1 (my)] 7, (17)
N (A2 — k?)
IMNmy, ms)=—5 [ d? . (18
Q(m 7m() (277)4/ e (kg—i—m%)(k:Q—i—mz) ( )

For the pseudoscalar meson fields, m-A;-transitions lead
to the factor Z, describing an additional renormalization
of pseudoscalar meson fields, with M4, being the mass of
axial-vector meson (see [1,8]):

6my, -1
Z = (1 th) ~14. (19)

Up to this moment, we just repeated formulae from
[1]. Now we begin a discussion about new scheme of the
dilaton fields introduction.

According to the prescription described in [1], we in-
troduce the dilaton field into Lagrangian (11) as fol-
lows: the dimensional model parameters G, A, K, and
mg are replaced by the following rule: G — G(x¢/x)?,
K — K(x/x)°, A — A(x/xe), Ma — ma(x/xe), where
X is the dilaton field with the vacuum expectation value
Xe- The current quark masses break scale invariance and,
therefore, should not be multiplied by the dilaton field.
The modified current quark masses m{ are also not mul-
tiplied by the dilaton field. Finally, we come to the La-
grangian

E(U? ¢7 X) = ‘C(X) + Lkin(ov ¢) + EG(U7 ¢7 X)

+Li-100p(0, ¢, X) + ALan(0,¢,X).  (20)
Here L(x) is the pure dilaton Lagrangian
£00 = 50:0° V(). (21)
with the potential
V(x)=B <X>4 [111 (X>4 = 1] : (22)
X0 X0

that has a minimum at x = xg, and the parameter B
representing the vacuum energy when there are no quarks.
Here, the term Lg (o, ¢, X) is

La(o,¢,x) =
2 9
S X

a,b=1

<9a0a - Ma% + Mg> (G(_)>;b1

X <9b0b - Nb% + ﬂg)

Z(x\ ¢ )"
_5 (_> Z ga¢a (G )ab gb(blr

Xe a,b=1

(23)

111

Expanding (23) in a power series of x, we can extract a
term that is of order y*. It can be absorbed by the term
in the pure dilaton potential which has the same degree
of x for the reasons given in [1].

~ The sum of one-loop quark diagrams is denoted as
Ll—loop:

3
Lrctoon (0, 61 ) = tr | —4mgI{\(m)o (i)

2 2
+2¢°1{'(m)(0® + Z¢°) (1> —-m?g*c” (1>
c Xe
X g
+mg-—=0(0® + 2¢*) = Zr(0* + Z¢%)°

C

. (24)

Not that Lagrangian (11) implicitly contains the term
L.y (see the introduction) that is induced by gluon anoma-
lies. When the procedure of the scale invariance restora-
tion is applied to Lagrangian (11), it also becomes scale
invariant. To avoid this, one should subtract this part in
the scale-invariant form and add it in a scale-breaking
(SB) form. This is achieved by including the term AL,,:

2
_ X

ALun(0, ¢, X) = —Lan(7, ) (X—) + Lon (0,6:X)- (25)

The term L,, was introduced in (1). Let us define the

scale-breaking term LSB. The coefficients h, and hy in

(1) can be determined by comparing them with the terms

in (15) that describe the singlet-octet mixing. We obtain

3 _ 3 Nz
hy = fﬁgugsz(GH))sgl, hy = Tﬁgugs(G( ))891'
(26)

If these terms were to be made scale-invariant, one should
insert (x/x.)? into them (see (25)). However, as the gluon
anomalies break scale invariance, we introduce the dilaton
field into these terms in a more complicated way. The
inverse matrix elements (G(*)) ! and (G(2)) !

ab
(@)g) = =2 KT (m) @7)
ayaly — @iy
4 2my, K IA (my,
(@) = Y2 KL () (28)

GG’ — (Giy))?
are determined by two different interactions. The numer-
ators are fully defined by the 't Hooft interaction that
leads to anomalous terms (1) breaking scale invariance,
therefore, we do not introduce here dilaton fields. The de-
nominators are determined by the constant G describing
the standard NJL four-quark interaction, and the dilaton
field is inserted into it, according to the prescription given
above. Finally, we come to the following form of Lgff:

2 4
LEE(J, ¢a X) = <h¢¢g+ha (UO 7F0X£ +FV(?) > <;),(29)

F \/imu + ms 0 \/57712 77—12
0= ) = .
\/ggu \/695 0 \/ggu \/égs

(30)
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From it, we immediately obtain the term AL,y,:

2
ALy, = <h¢¢3 —h, (ao — Foxl + Fg) )
2 2
() (- ()
Xc Xe
3 Equations

Let us now consider the vacuum expectation value of the
divergence of the dilatation current S* calculated from
the potential of Lagrangian (20):

9 9
(8,,5") (Zgaav +Z¢a 4v>

X=Xc
0,=0

$a=0

4
Xe 2 0/~
4B <> —2h, (Fo — F9)"= > mY{qq).
Xo _
q=u,d,s
Here V = V(x) + V(o,,x), and V (0, ¢, x) is the poten-
tial part of Lagrangian L(o, ¢, x) that does not contain
the pure dilaton potential. The expression given in (32)
is simplified by using the following relation of the quark
condensates to integrals I{'(m,) and I{'(m.):

(32)

4mg I (my) = —(q9)o, (¢g=wu,d,s), (33)

and by taking into account that these integrals are con-
nected with constants Gfl;) through gap equations, as will
be shown below (see (39) and (40)). Comparing (32) with
the QCD expression

(0uS"y =Cs— Y mylda), (34)
q=u,d,s
where LN N
— c VN /Q a2
Cs = ( 24 12) <7r (Giw) > (35)

where N, is the number of colors, N¢ is the number of
flavours, (2(G%,)?) and (gq) are the gluon and quark
condensates, one can see that the term Y mJ(gq) on the
right-hand side of (34) is canceled by the corresponding
contribution on the right-hand side of (32). Equating the
right hand sides of (32) and (34),

Ce — Z m2<q(J> =
q=u,d,s
xe)’ 2
4B <%) —2h, (Fy — F§) = Y my(aa), (36)

q=u,d,s

we obtain the correspondence

4 9
Cy = 4B <X0> 3 (0 i) E ) o — D)

a,b=8

—2hy (Fo— FO)?, (37)
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where 0 = 0 (a = 1,...7), ud = m?, and pd =
—ms/v/2. This equation relates the gluon condensate,
whose value we take from other models (see, e.g., [9]),
to the model parameter B. The next step is to investigate
gap equations.

At this step, we introduce the new dilaton field x' =
X — Xe with zero vacuum expectation value. In the fol-
lowing calculations, the effective meson Lagrangian is ex-
panded in terms of y’.

As usual, gap equations follow from the requirement
that the terms linear in o and x’ should be absent in the
effective Lagrangian:

5L 5L 5L
foslgzg “doolgzg oxigzg ¢
X = Xe X = Xc X = Xc
This leads to the following equations:
=0
_ —)\— mg — ms —)\—
(mu =) (@) = == (G )y
—8my I (my,) = 0, (39)
(s —m) (G )gg — V2, —mO)(G)aq
—8mI{*(my) =0, (40)
3 4
4B (X—> L <X—)
X0 X0 Xo
9
LS a0 -1 -
+— Y UG (A — 3m)
Xe a,b=8
2he
—Z2 (R - F9)* =o. (41)

C

Using (8) and (9), one can rewrite egs. (39) and (40) in
the well-known form [7]:

m = my — 8Gm, i (m.,)
—32KmymeIi (my) I (my),
m? = my — 8Gm I (ms) — 32K (m, I{(my,))>.

To determine the masses of quarkonia and of the glue-
ball, let us consider the part of Lagrangian (20) which is

quadratic in fields o and ' and which is denoted as L

1 -
LP(0,6,x') = —50{[(G7)s — 811 (mu)] + 47} oy

2
1
—59 (G D)gg = 8I{' ()] + 4m}o?
M2X/2
—9u9s(G 7))5?910'“08 — g2
JFZ —(G') o 9oBX
a,b=8 ¢

b, (Fy — FO
n (Fo — )

73 (as - ou\/ﬁ) X'

(44)
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Table 1. The masses of physical scalar meson states o1, oir,
omr and the values of the parameters x., xo, bag constant B,
and (bare) glueball mass M (in MeV) for two cases: 1) Moy, =
1500 MeV and 2) My, = 1710 MeV.

o1 | o11 | ot | Xe | X0 |B(GeV4)| My |

400 | 1100 | 1500 | 206 | 190 0.009 1447
II | 400 | 1100 | 1710 | 180 | 166 0.009 1665
where
1 9
R SRS
Xe a,b=8
9
£ a2(EO) 7 - )
a,b=8
hoAFD + 4ha<F8)2> (45)

is the glueball mass before taking account of mixing ef-
fects. Here, the gap equations and eq. (37) are taken into
account.

From this Lagrangian, after diagonalization, we ob-
tain the masses of three scalar meson states: oy, o1, and
o1, and a matrix of mixing coefficients b that connects
the nondiagonalized fields o,,, 0, X’ with the physical ones
01, 011, 0111+

Oy, bo,o1 boyon bo,om 01

s | = | bo.or bo.ou Voo o1 (46)
!

X bX'UI bX'UII bX'O’IH 0111

4 Model parameters and numerical estimates

The basic parameters of our model are G, K, A, m,,, and
my. After the dilaton fields are introduced, they keep their
values [5]:

my, = 280 MeV, m, =420 MeV, A=1.26 GeV,
G=438GeV? K =11.2GeV >, (47)

Moreover, new three parameters xo, X, and B appear.
To fix the new parameters, one should use egs. (37), (41),
and the physical glueball mass. As a result, we obtain for
xo and B:

9
X0 = Xe GXP{ { Z ﬂg(G(f));bl(:iﬂb — [if)

a,b=8

2y (Fo=B)7) A 0G0 )

+2h, (Fy — F§)2] } (48)
B = (€ -G ) i)
4
+2h, (Fy — Fg)2> (’;0) : (49)
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Table 2. Elements of the matrix b, describing mixing in the
scalar isoscalar sector. The upper table refers to the case o1 =
f0(1500), the lower one to the case o1 = fo(1710).

o1 o11 o111 |
Ou 0.939 0.240 0.247
os | —0.214 0.968 —0.128
x| —=0.270  0.067 0.960

o1 011 O111
Ou 0.948 0.232 0.216
os | —0.216 0971 —0.099
x| —0.233  0.047 0.971

We adjust the parameter x. so that the mass of the heav-
iest scalar meson, oy, would be either 1500 MeV or 1710
MeV. The result of our fit for both cases is given in table 1.
One will also find the mixing coefficients in table 2.

5 Strong decays of scalar mesons

Once all parameters are fixed, we can estimate the decay
widths for the main strong decay modes of scalar mesons:
oy — mm, KK, 1, n1’, and 47 where | = I, I, ITI.

Note that, in the energy region under consideration
(~ 1500 MeV), we work on the brim of the validity of
exploiting the chiral symmetry that was used to construct
our effective Lagrangian. Thus, we can consider our results
as rather qualitative.

The vertices describing meson decays can be taken
from Lagrangian (20). Below we display only those neces-
sary to calculate the widths of the decays under consider-
ation:

3
L® =L +L1® + LY, (50)
Ly = AL/ (2rtn +70n°)
+Af X (KT K™+ K°K°)
/ /
+AS, X' + A, X/ o0, (51)
LY = Ao, (2rT 7+ n70)
+AY o (KT K™+ K°K°)
+ A5 ko (KTK ™+ KOK) + A" sin 6%,
+ A% cos OPonn — A% sin 200,11
+ A sin200nn’ + A“Z " ad, (52)
L) = A3 sin® 0x/nn — A3" sin 20x nn/
+ AP 0uoy, (53)

where LS), L((f)7 and ng’l) contain the vertices describ-

ing decays of the pure glueball, pure quarkonia, and the
anomaly induced vertices describing pure glueball decays,
respectively.

The constants at the vertices in (51)—(53) are defined
as follows:

2 2

o M2, oM
) )

T Xe KK Xe
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2 2
M
e R (54)
Xe Xe
A" =29, my 7, A® = —2V2g,m, Z,
my+ms [ Fx 2 Mg (My—My)
A% =29, 7 | ———— | — — |
KK g ( D) <FK> + My +Mg
My+ms [ Fs 2
ASrr = —20/2¢9, 7 | —————
KK V2g ( 5 (FK>
e i), (55)
My + Mg
on _ _ 2hg an _ 2he (56)
¢ — X ) o 3 ’
c Xc

where § = 0 — 6y, with 6 being the singlet-octet mixing
angle in the pseudoscalar channel, § ~ —19° [8], and 6y
the ideal mixing angle, tan 6y = 1/\/5 The pion and kaon
weak decay constants are denoted as F and F, respec-
tively, and F, = m,/(9sV'Z) (see [8]).

Let us start with the lightest scalar isoscalar meson
state og, associated with fp(400-1200). This state decays
into pions. This is the only strong decay mode, because o
is too light for other channels to be open. The amplitude
describing its decay into pions has the form:

Ay mntr— =249 byio, +2A4%0, o1, (57)
where the coefficients by, and by, ., represent the corre-
sponding elements of the 3 x 3 mixing matrix for scalar
isoscalar states (see table 2). The glueball and quarkonium
contributions have equal signs and increase the width of
1.

The amplitude (57) leads to the following width of oy:

3
Iy msnn = EFmﬁﬁr ~ 820 MeV , (58)
for opyy identified with f(1500), and
Iy—nr ~ 830 MeV (59)

for the case o1 = fp(1710). The experimental value is
known with a large uncertainty and is reported to lie in
the interval from 600 to 1000 MeV [10].

The amplitude describing the decay of the state oy
that we identify with f5(980) into pions also consists of
two parts

Acrn%ﬂ*ﬂ* = 2A§rwa/UII +24%0, o1, - (60)
Here the glueball contribution is small again and the
quarkonium determines the decay width, however, in this
case both contributions are opposite in sign and slightly
compensate each other. For the decay width, we obtain

Lopiamm & 28 MeV, (61)
if o111 = f0(1500) and

Fypy—mn & 26 MeV, (62)
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if o1 = fo(1710). The experiment gives for the decay of
o1 into pions a value lying within the range 30-70 MeV
[10].

Now let us proceed with decays of oy;;. The process
o1 — ©T T is given by the amplitude

AUIII—Wr*Tr* = 2A7gTﬂ'bX/0'III + 2Aub0u0111 (63)

that consists of two parts. The first part represents the
contribution from the pure glueball. This contribution is
small (since it is proportional to the pion mass squared),
and the process is determined by the second part that
describes the decay of the quarkonium component. As a
result, the width of the decay oy — 77 if o1 = fo(1500)
is

Fopiomn & 14 MeV, (64)
and, if o111 = f0(1710),
Fopionn ~ 8 MeV. (65)

In the case of KK channels, the contribution of
the pure glueball is also proportional to the kaon mass
squared, and is rather large as compared to the pions case.
The amplitude of the decay o — KTK~ consists of
three parts:

Api—r+k- =AY bvom + Ak koo + Ak 1,(1)(,5,,1&.i
In the case when oy is fp(1500), we have (60
Iyxie =200 it - = 29 MeV, (67)

and in the other case (o111 = fo(1710))
I ki ~ 60 MeV. (68)

The amplitude of the decay of oy into 51 and 71’ can
also be considered in the same manner. The only com-
plication is the singlet-octet mixing in the pseudoscalar
sector and additional vertices coming from AL,,. The cor-
responding amplitude of the decay into nn is

AUIH—”??? = 2Agnbx’ffm + 24" sin® ébdudm
+2A% cos® Oby, gy + 2 e sin 0by /gy (69)

The decay widths thereby are, if o1 = fp(1500),

Doyyy o & 25 MeV, (70)
and, if o111 = fo(l?lO),
Dopiomm = 43 MeV. (71)

For the decay of o1 into 71/, we have the following am-
plitude:
Ay = —A"sin20b,, 51, + A® 8in 20by 1,

— A5 sin 20by16y; (72)

The direct decay of a bare glueball into nn’ is absent
here. The process occurs only due to the mixing of the
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glueball and scalar isoscalar quarkonia and the anomaly
contribution. The decay widths are as follows:

Lo —my ~ 10 MeV, (73)
for o1 = fo(1500), and
Loy =~ 30 MeV (74)

for o1 = fo(1710). The estimate for the decay fo(1500)
into nn’ is very rough, because the decay is allowed only
due to a finite width of the resonance as its mass lies a
little bit below the nn’ threshold. The calculation is made
for the mass of fo(1500) plus its half-width. For f;(1710),
we have a more reliable estimate, since its mass is large
enough for the decay to be possible.

Up to this moment we considered only decays into a
pair of mesons. For the state oy, there is a possibility to
decay into 4 pions. This decay can occur through inter-
mediate o (fy(400-1200)) resonance.

The decay through the o-resonances can be repre-
sented as two processes: with two resonances oy — 0o —
47 and one resonance oy; — 021 — 47. The decay of a
glueball into two o is given by the amplitude

AUIII"UU ~ 2Ag—0bx'0111 + 3Z_1Aub0’u0111b<7u01b0u01
+2A3'an/U'IIIb2

Oy01°

(75)

The amplitude describing the decay into 27727~ through
two o-resonances is

= 2‘40111—*00’42

o—mtmT—

% (As(812) A0 (834) + A(s14) A(523)),

where the function A, (s) appears due to the resonant
structure of the processes

AO’[H —oo—2n 2w~

(76)

As(s) = (s — M2 +iMyT,,) 7", (77)
where Iy, is the decay width of the oy resonance (see (58)
and (59)). This function depends on an invariant mass
squared s;; defined as follows:

(i,j=1,...,4).

Here i and j enumerate the momenta k; of pions 7+ (ky),
7 (ka), mt(ks), and 7 (ky).

Now let us consider the decay into 47 through one
o-resonance. The process is described by two vertices in
Lagrangian (20):

Sij = (kz + kj)Q, (78)

Aly X0y 2n ™ 4+ 7070) + AY, oyou (2n T + 7070,

o2
(79)
and 5 7
u MyJu
AJIH~>027r = _gZZ’ AgZﬂ' = T (80)

are the glueball and quarkonia amplitudes. Thus, the am-
plitude describing this process is as follows:

— g
AUIII—W?‘IT - 2Aa2ﬂ(b0'u0'1bX/UIII + quUIIIbX'UI)

+4AY

o2 (81)

bU’uO'IIIquO'I'
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The glueball contribution prevails over the quarkonium
one in magnitude and is opposite in sign.

The amplitude describing the decay o — 27+ 2m™
through one o-resonance is

A0111—>027r—>27r+27r— = _AUIII‘}0'27\'AO'—>7T+7T_

X (Ag(s12)+ Ao (s34) + Ao (s14) + Ag(s23)) . (82)

The amplitudes for the decays into 277+ 7~ and 4x°
are calculated in a similar way (see [11] for details). As a
result, we obtain for oy = fo(1500) the following decay
widths:

F0'111~>27r+27'r* ~ 2.2 MeV, FO'1114>27T071'+7T7 ~1.2 MGV,

[yiaamo ~ 0.1 MeV. (83)
The total width of oy is, therefore, I7°° _,  ~ 3.5 MeV.
In the other case (o1 = fo(1710)),

FO’111~>27T+27!'7 ~6 Meva F0111H27r07r+7r* ~ 3.3 MGV,

Iy —an0 = 0.3MeV, (84)
and the total width is I'}°"_, ~~ 10MeV. As one can
see, these values are very small. This is a result of strong
compensations between the glueball and quarkonia con-
tributions.

The other possibility of the state oyi; to decay into 4
pions is to produce two intermediate p-resonances (o1 —
pp — 4m). Contrary to the decay through scalar reso-
nances, where strong compensations take place, in the
process with p-resonances, no compensation occurs, and
it turns out that the decay through p determines the most
part of the decay width of oypy.

To calculate the amplitude describing the process
o1 — 2p, we need a piece of the Lagrangian with p-meson
fields. Although we did not consider vector mesons in the
source Lagrangian, an extended version of NJL model [8,
12] contains the vector and axial-vector fields. Taking the
mass term for p-mesons from [8,12] and including dilaton
fields into it according to the principle of scale invariance,
we obtain

M2 Y 2 B
- (Z) (201 Py + PP (85)
where M, = 770 MeV is the p-meson mass. From this, we
derive the vertex describing the decay o — pp:

2
X—pbx'amx’@pffp; + Phop)-

c

(86)

The decay of a p-meson into pions is described by the
following amplitude:

9p(p1 —p2)", (87)

where g, = 6.14 is the p-meson decay constant, p; and p>
are the momenta of 7+ and 7. Finally, we come to the
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Table 3. The partial and total decay widths (in MeV) of the
scalar meson states fo(400-1200), fo(980) and of the glueball
for two cases: omr = fo(1500) and omr = fo(1710), and exper-
imental values of decay widths of fo(1500) and fo(1710) [10].

Jo(400-1200) [ fo(980) [ fo(1500) | fo(1710) ]
Trn 820 28 14 8
Tii - - 29 60
Tyn - - 25 43
Ly - - ~ 10 30
e - - 140 |~ 1000
Tot 820 28 220 |~ 1100
reee 600-1200 | 40-100 112 130

following formula for the amplitude of the process o1 —

pPp° — 2nt2r—:

Mggng/UIII

AU[H—>pOp0—)27T+27T7 - -
Xe

X ((513 + 524 — 514 — 523) Ap(512) Ap(534)

+(s13 + S24 — S12 — 834)Ap(814>Ap(823)>' (88)

The function A,(s) is the following:

Ay(s) = (s — M} +iM,I,)"". (89)
Here I', = 150 MeV is the decay width of the p-resonance.
The decay into 27%7+ 7~ occurs through a pair of charged
p-resonances: pT and p~. The amplitude of this process is
the same as for the decay with intermediate p°. The decay
into 47° cannot go via p-resonances.

In an extended NJL model [8,12], there are no vertices
describing the decay of a quarkonium into p-mesons. As a
result, only the glueball part determines the decay of oyyg
into 4 pions through p-resonances unlike the case with o
resonances. This leads to a large decay rate through p-
mesons (contrary to decays through o). As a result, we
obtain for the decay widths of ¢ — 47 via p-resonances if
o111 = f0(1500)

F0111—>pp—>27'r+27r* ~50 MeV7 FUHI—>pp—>27rOTr+7r* ~90 MQV,
(90)

with the total width It° ~ 140MeV. In the other

o —4mT

case (o1 = fo(1710)),

FG’III*’PP"QTK‘*’QW* =~ 350 MeV,

F0111—>pp—>2ﬂ'07r+7r* ~ 650 1\/16\[7 (91)

and the total width 17", ~ 1GeV.

Now we can estimate the total width of the state oypg.
If oqyp is identified with fo(1500), we have

Ftot

0111

~ 220 MeV, (92)

which is in qualitative agreement with the experimen-
tal value 112 MeV [10], and, in the other case (o =

fo(1710))
Ftot

o111

~ 1.2 GeV, (93)
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exceeding the experimental value 130 MeV [10] by an or-
der. In the last case (fp(1710)), p-mesons can show up as
on-mass-shell decay products at large probability. The de-
cay width is estimated as ~1 GeV. The absence of this
decay mode in experimental observations is a reason that
fo(1710) is not a glueball.

Our estimates for the decay widths of the scalar meson
states oy, or1, and oy are collected in table 3.

6 Conclusion

In the approach presented here, we assume that (with the
exception of the dilaton potential and the 't Hooft inter-
action) scale invariance holds for the effective Lagrangian
before and after SBCS in the chiral limit. On the other
hand, we take into account the effects of scale invariance
breaking that come from three sources: the terms with cur-
rent quark masses, the dilaton potential reproducing the
scale anomaly of QCD, and term L,, induced by gluon
anomalies (see (1) in the introduction).

The scale invariance breaking that is connected with
the term L,, was not taken into account in our previous
paper [1]. This led to a small quarkonia-glueball mixing
proportional to current quark masses, disappearing in the
chiral limit. If the term AL,y is taken into account in (20),
the quarkonia-glueball mixing becomes much greater and
does not disappear in the chiral limit, being proportional
to constituent quark masses (quark condensates). This ac-
cords to the results obtained from QCD in [13]. This con-
tribution to the quarkonia-glueball mixing turns out to
have decisive effect on the strong decay widths of scalar
mesons.

For the scalar meson states f,(400-1200) and f;(980),
we obtain good agreement with experimental data [10].
Their decay widths are determined by quarkonium parts
of decay amplitudes.

Strong decays of the scalar meson state opy (“glue-
ball”) are considered for two different masses: 1500 MeV
and 1710 MeV. In the 77 channel, the contribution from
quarkonia prevails over that from the glueball and thereby
determines the decay rate. In the case of KK, nn, nn'
channels, there are noticeable compensations among dif-
ferent parts of the decay amplitudes.

A similar situation with compensations takes place
in the decay of a glueball into 47 with intermediate o-
mesons. Here we have a strong compensation between the
glueball and quarkonia contributions. But there is a possi-
bility for the state oy; to decay through p-resonances. In
this case, as the quarkonium component is absent, no com-
pensation occurs, and this channel determines the most of
the total decay width of oypy.

Our calculations are rather qualitative. However, they
allow us to conclude that f,(1500) is a scalar glueball
state, whereas fy(1710) is a quarkonium, for the following
reasons: 1) The total decay width of the glueball in our
model is in better agreement with experiment if f,(1500)
is assumed to be the glueball, rather than f,(1710). 2) As
follows from our calculations, the main decay mode of the
scalar glueball is that into four pions. This is true for the
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state fo(1500). A decay of f,(1710) into four pions, how-
ever, was not seen in experiment. 3) Moreover, a direct
decay into a pair of p-mesons on their mass shell would
be possible for fo(1710) if it was a scalar glueball. How-
ever, it was not seen. Our conclusion regarding fo(1710)
as a quarkonium state is in agreement with the conclu-
sion made in our papers [14]. Concerning the nature of
fo(1500), we are in agreement with those in [15].

We are going to use the approach developed in our fu-
ture work to describe all experimentally observed 19 scalar
meson states that lie in the energy interval from 0.4 to 1.71
GeV. We hope to identify them with two scalar meson
nonets (the ground and radially excited) and the scalar
glueball (fo(1500)).

We are grateful to Profs. A.A. Andrianov, D. Ebert and Drs.
A.E. Dorokhov, S.B. Gerasimov, and N.I. Kochelev for use-
ful discussions. The work is supported by RFBR Grant 00-02-
17190.
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