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Abstract. This paper is a sequel of a previous one (Scalar mesons in a chiral quark model with glueball,
Eur. Phys. J. A 8, 567 (2000)) where an attempt to construct an effective U(3)× U(3)-symmetric meson
Lagrangian with a scalar glueball was made. The glueball was introduced by using the dilaton model on
the base of scale invariance. The scale invariance breaking because of current quark masses and the scale
anomaly of QCD, reproduced by the dilaton potential, was taken into account. However, in the previous
paper, the scale invariance breaking because of the terms like hφφ2

0 and hσσ̄2
0 , where φ0 and σ̄0 are the

pseudoscalar and scalar isosinglets, was not taken into account. These terms are produced by the part of
the ’t Hooft interaction that is connected with gluon anomalies. Allowing for the scale invariance breaking
by these terms has a decisive effect on the quarkonium-glueball mixing and noticeably changes the widths
of glueball strong decays. Taking account of this additional source of the scale invariance breaking and its
implications are the subject of the present work. It is also shown that in the decay of a glueball into four
pions, the channel with two ρ-resonances dominates.

PACS. 12.39.Ki Relativistic quark model – 12.39.Mk Glueball and nonstandard multiquark/gluon states
– 13.25.-k Hadronic decays of mesons – 14.40.-n Mesons

1 Introduction

In our previous work [1], an effective meson Lagrangian
including a scalar glueball field was derived from a chi-
ral quark Lagrangian of the Nambu–Jona-Lasinio (NJL)
type. The glueball was introduced into the effective meson
Lagrangian by using the dilaton model [2]. This allowed us
to construct an effective meson Lagrangian which is scale-
invariant except for the scale anomaly of QCD reproduced
by the dilaton potential and the terms with current quark
masses, in accordance with the QCD Lagrangian1. How-
ever, in [1] we did not take into account another source of
the breaking of scale invariance. Indeed, there are terms
in the effective Lagrangian that are connected with gluon
anomalies and which are produced by the ’t Hooft interac-
tion. They describe the singlet-octet mixing among scalar
and pseudoscalar mesons and have the following form [3,
4]:

Lan(σ̄, φ) = −hφφ
2
0 + hσσ̄

2
0 , (1)

where φ0 and σ̄0 (〈σ̄0〉 �= 0) are pseudoscalar and scalar
meson isosinglets, respectively, and hφ, hσ are constants;
φ0 =

√
2/3φu −√

1/3φs, σ̄0 =
√
2/3σ̄u −√

1/3σ̄s, where
a e-mail: volkov@thsun1.jinr.ru
1 Note that in [1] there was a wrong sign at the last term

in formula (43), which led to incorrect estimates for the decay
widths of the scalar glueball.

φu and σ̄u (〈σ̄u〉 �= 0) consist of u-quarks and φs, σ̄s

(〈σ̄s〉 �= 0) of s-quarks.

When constructing a scale-invariant effective Lagran-
gian with dilaton fields, these terms require a special treat-
ment taking into account the breaking of scale invariance.
Note that the coefficients hφ and hσ are determined by
two different interactions: the ’t Hooft interaction and
the standard NJL four-quark interaction; and the dila-
ton field should be inserted into them by using a special
prescription (see below sect. 2). Moreover, as can be antic-
ipated, it turns out that these terms determine the most
of quarkonia-glueball mixing.

The structure of our paper is the following. In sect.
2, a chiral quark model of the NJL type with the six-
quark ’t Hooft interaction is bosonized to construct an
effective meson Lagrangian. The meson Lagrangian is ex-
tended by introducing a scalar glueball as a dilaton on
the base of scale invariance. The gap equations, the di-
vergence of the dilatation current and quadratic terms of
the meson Lagrangian are derived in sect. 3. The numeri-
cal estimates of model parameters are given in sect. 4. In
sect. 5, the widths for the main modes of strong decays
of scalar isoscalar mesons are calculated. The discussion
over the obtained results is given in sect. 6.
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2 Lagrangians

Let us show how the effective meson Lagrangian looks
when all three sources of scale invariance breaking men-
tioned above are taken into account. Recall that the orig-
inal effective U(3) × U(3) quark Lagrangian has the fol-
lowing form (see [1]):

L = LNJL + LtH, (2)

LNJL = q̄(i∂̂ −m0)q+
G

2

9∑
a=1

[(q̄τaq)2 + (q̄iγ5τaq)2], (3)

LtH = −K {det[q̄(1 + γ5)q] + det[q̄(1− γ5)q]} , (4)

where q and q̄ stand for u, d, and s quark fields; m0 is
a current quark mass matrix with diagonal elements: m0

u,
m0

d, m
0
s (m0

u ≈ m0
d). The matrices τa are related to the

Gell-Mann λa matrices as follows:

τa = λa (a = 1, ..., 7), τ8 = (
√
2λ0 + λ8)/

√
3,

τ9 = (−λ0 +
√
2λ8)/

√
3. (5)

Here λ0 =
√
2/3 1, with 1 being the unit matrix. The

term LNJL is the standard U(3) × U(3)-symmetric NJL
Lagrangian with four-quark vertices, and LtH is the six-
quark ’t Hooft interaction.

It is convenient to use an equivalent form of Lagrangian
(2) containing only four-quark vertices whose interaction
constants take account of the ’t Hooft interaction. Using
the method described in [1] and [5–7], we obtain

L = q̄(i∂̂ −m0)q +
1
2

9∑
a,b=1

[G(−)
ab (q̄τaq)(q̄τbq)

+G(+)
ab (q̄iγ5τaq)(q̄iγ5τbq)], (6)

where

G
(±)
11 = G

(±)
22 = G

(±)
33 = G± 4KmsI

Λ
1 (ms),

G
(±)
44 = G

(±)
55 = G

(±)
66 = G

(±)
77 = G± 4KmuI

Λ
1 (mu),

G
(±)
88 = G∓ 4KmsI

Λ
1 (ms), G

(±)
99 = G,

G
(±)
89 = G

(±)
98 = ±4

√
2KmuI

Λ
1 (mu),

G
(±)
ab = 0 (a �= b; a, b = 1, . . . , 7),

G
(±)
a8 = G

(±)
a9 = G

(±)
8a = G

(±)
9a = 0 (a = 1, . . . , 7), (7)

and m̄0 is a diagonal matrix composed of modified current
quark masses

m0
u = m0

u − 32KmumsI
Λ
1 (mu)IΛ

1 (ms), (8)

m0
s = m0

s − 32Km2
uI

Λ
1 (mu)2, (9)

introduced here to avoid double counting of the ’t Hooft
interaction in gap equations (see [1,5]). Here mu and ms

are constituent quark masses and the integrals

IΛ
n (ma) =

Nc

(2π)4

∫
d4

ek
θ(Λ2 − k2)
(k2 +m2

a)n
, (10)

where n = 1, 2 and a = u, s, are calculated in the
Euclidean metric and regularized by a simple O(4)-
symmetric ultraviolet cut-off Λ.

After bosonization of Lagrangian (6) and taking into
account the spontaneous breaking of chiral symmetry
(SBCS) (see, e.g., [1,5]) we obtain

L(σ, φ) = LG(σ, φ)

−i Tr ln
{
i∂̂−m+

9∑
a=1

τaga(σa + i
√
Zγ5φa)

}
=

Lkin(σ, φ) + LG(σ, φ) + L1-loop(σ, φ), (11)

σ =
9∑

a=1

σaτa, φ =
9∑

a=1

φaτa. (12)

Note that 〈σu〉 = 〈σs〉 = 0 (σu ≡ σ8 and σs ≡ σ9) unlike
σ̄u and σ̄s introduced after the formula (1) to define σ̄0.
The fields σ̄u and σ̄s are connected with σu and σs by the
relations

σ̄u = σu − mu − m̄0
u

gu
, σ̄s = σs +

ms − m̄0
s√

2gs

, (13)

while 〈σ̄a〉 = 0, (a = 1, . . . , 7).
The term Lkin(σ, φ) contains the kinetic terms

Lkin(σ, φ) =
1
2

9∑
a=1

(
(∂νσa)

2 + (∂νφa)
2
)
, (14)

and the term LG(σ, φ) is

LG(σ, φ) =

−1
2

9∑
a,b=1

gaσ̄a

(
G(−)

)−1

ab
gbσ̄b

−Z
2

9∑
a,b=1

gaφa

(
G(+)

)−1

ab
gbφb =

−1
2

9∑
a,b=1

(gaσa−µa+µ̄0
a)

(
G(−)

)−1

ab
(gbσb−µb+µ̄0

b)

−Z
2

9∑
a,b=1

gaφa

(
G(+)

)−1

ab
gbφb. (15)

Here we introduced, for convenience, the constants µa and
µ̄0

a defined as follows: µa = 0, (a = 1, . . . , 7), µ8 = mu,
µ9 = −ms/

√
2 and µ̄0

a = 0, (a = 1, . . . , 7), µ̄0
8 = m̄0

u,
µ̄0

9 = −m̄0
s/
√
2. The term L1-loop(σ, φ) is the sum of one-

loop quark contributions2:

L1-loop(σ, φ)=tr

[
−4mgIΛ

1 (m)σ+2g2IΛ
1 (m)(σ2+Zφ2)

+
1
4
[m,φ]2− −m2σ2 +mgσ(σ2 + Zφ2)

−g
2
[m,φ]−[σ, φ]− − g2

4
((σ2 + Zφ2)2 − [σ, φ]2−)

]
. (16)

2 Here we left only the diverging parts of the quark loop
diagrams (see [8]).
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The Yukawa coupling constants ga describing the in-
teraction of quarks and mesons appear as a result of renor-
malization of meson fields (see [1,8] for details):

g21 = g22 = g23 = g28 = g2u = [4IΛ
2 (mu)]−1,

g24 = g25 = g26 = g27 = [4IΛ
2 (mu,ms)]−1,

g29 = g2s = [4IΛ
2 (ms)]−1, (17)

IΛ
2 (mu,ms)=

Nc

(2π)4

∫
d4

ek
θ(Λ2 − k2)

(k2 +m2
u)(k2 +m2

s)
. (18)

For the pseudoscalar meson fields, π-A1-transitions lead
to the factor Z, describing an additional renormalization
of pseudoscalar meson fields, with MA1 being the mass of
axial-vector meson (see [1,8]):

Z =
(
1− 6mu

M2
A1

)−1

≈ 1.4. (19)

Up to this moment, we just repeated formulae from
[1]. Now we begin a discussion about new scheme of the
dilaton fields introduction.

According to the prescription described in [1], we in-
troduce the dilaton field into Lagrangian (11) as fol-
lows: the dimensional model parameters G, Λ, K, and
ma are replaced by the following rule: G → G(χc/χ)2,
K → K(χc/χ)5, Λ → Λ(χ/χc), ma → ma(χ/χc), where
χ is the dilaton field with the vacuum expectation value
χc. The current quark masses break scale invariance and,
therefore, should not be multiplied by the dilaton field.
The modified current quark masses m̄0

a are also not mul-
tiplied by the dilaton field. Finally, we come to the La-
grangian

L̄(σ, φ, χ) = L(χ) + Lkin(σ, φ) + L̄G(σ, φ, χ)

+L̄1-loop(σ, φ, χ) +∆Lan(σ, φ, χ). (20)

Here L(χ) is the pure dilaton Lagrangian

L(χ) = 1
2
(∂νχ)2 − V (χ) , (21)

with the potential

V (χ) = B

(
χ

χ0

)4
[
ln

(
χ

χ0

)4

− 1

]
, (22)

that has a minimum at χ = χ0, and the parameter B
representing the vacuum energy when there are no quarks.

Here, the term L̄G(σ, φ, χ) is

L̄G(σ, φ, χ) =

−1
2

(
χ

χc

)2 9∑
a,b=1

(
gaσa − µa

χ

χc
+ µ̄0

a

) (
G(−)

)−1

ab

×
(
gbσb − µb

χ

χc
+ µ̄0

b

)

−Z
2

(
χ

χc

)2 9∑
a,b=1

gaφa

(
G(+)

)−1

ab
gbφb. (23)

Expanding (23) in a power series of χ, we can extract a
term that is of order χ4. It can be absorbed by the term
in the pure dilaton potential which has the same degree
of χ for the reasons given in [1].

The sum of one-loop quark diagrams is denoted as
L̄1-loop:

L̄1-loop(σ, φ, χ) = tr

[
−4mgIΛ

1 (m)σ
(
χ

χc

)3

+2g2IΛ
1 (m)(σ2 + Zφ2)

(
χ

χc

)2

−m2g2σ2

(
χ

χc

)2

+mg
χ

χc
σ(σ2 + Zφ2)− g2

4
(σ2 + Zφ2)2

]
. (24)

Not that Lagrangian (11) implicitly contains the term
Lan (see the introduction) that is induced by gluon anoma-
lies. When the procedure of the scale invariance restora-
tion is applied to Lagrangian (11), it also becomes scale
invariant. To avoid this, one should subtract this part in
the scale-invariant form and add it in a scale-breaking
(SB) form. This is achieved by including the term ∆Lan:

∆Lan(σ, φ, χ) = −Lan(σ̄, φ)
(
χ

χc

)2

+ LSB
an (σ, φ, χ). (25)

The term Lan was introduced in (1). Let us define the
scale-breaking term LSB

an . The coefficients hσ and hφ in
(1) can be determined by comparing them with the terms
in (15) that describe the singlet-octet mixing. We obtain

hφ = − 3
2
√
2
gugsZ(G(+))−1

89 , hσ =
3

2
√
2
gugs(G(−))−1

89 .

(26)
If these terms were to be made scale-invariant, one should
insert (χ/χc)2 into them (see (25)). However, as the gluon
anomalies break scale invariance, we introduce the dilaton
field into these terms in a more complicated way. The
inverse matrix elements (G(+))−1

ab and (G(−))−1
ab ,

(G(+))−1
89 =

−4√2muKI
Λ
1 (mu)

G
(+)
88 G

(+)
99 − (G(+)

89 )2
, (27)

(G(−))−1
89 =

4
√
2muKI

Λ
1 (mu)

G
(−)
88 G

(−)
99 − (G(−)

89 )2
, (28)

are determined by two different interactions. The numer-
ators are fully defined by the ’t Hooft interaction that
leads to anomalous terms (1) breaking scale invariance,
therefore, we do not introduce here dilaton fields. The de-
nominators are determined by the constant G describing
the standard NJL four-quark interaction, and the dilaton
field is inserted into it, according to the prescription given
above. Finally, we come to the following form of LSB

an :

LSB
an (σ, φ, χ)=

(
−hφφ

2
0+hσ

(
σ0−F0

χ

χc
+F 0

0

)2
)(

χ

χc

)4

,(29)

F0 =
√
2mu√
3gu

+
ms√
6gs

, F 0
0 =

√
2m̄0

u√
3gu

+
m̄0

s√
6gs

. (30)
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From it, we immediately obtain the term ∆Lan:

∆Lan =

(
hφφ

2
0 − hσ

(
σ0 − F0

χ

χc
+ F 0

0

)2
)

×
(
χ

χc

)2
(
1−

(
χ

χc

)2
)
. (31)

3 Equations

Let us now consider the vacuum expectation value of the
divergence of the dilatation current Sµ calculated from
the potential of Lagrangian (20):

〈∂µS
µ〉 =

(
9∑

a=1

σa
∂V

∂σa
+

9∑
a=1

φa
∂V

∂φa
+χ

∂V

∂χ
−4V

)∣∣∣∣∣ χ=χc
σa=0
φa=0

=

4B
(
χc

χ0

)4

−2hσ

(
F0 − F 0

0

)2−
∑

q=u,d,s

m̄0
q〈q̄q〉. (32)

Here V = V (χ) + V̄ (σ, φ, χ), and V̄ (σ, φ, χ) is the poten-
tial part of Lagrangian L̄(σ, φ, χ) that does not contain
the pure dilaton potential. The expression given in (32)
is simplified by using the following relation of the quark
condensates to integrals IΛ

1 (mu) and IΛ
1 (ms):

4mqI
Λ
1 (mq) = −〈q̄q〉0, (q = u, d, s), (33)

and by taking into account that these integrals are con-
nected with constants G(−)

ab through gap equations, as will
be shown below (see (39) and (40)). Comparing (32) with
the QCD expression

〈∂µS
µ〉 = Cg −

∑
q=u,d,s

m0
q〈q̄q〉, (34)

where

Cg =
(
11Nc

24
− Nf

12

)〈α
π

(
Ga

µν

)2
〉
, (35)

where Nc is the number of colors, Nf is the number of
flavours, 〈α

π (G
a
µν)

2〉 and 〈q̄q〉 are the gluon and quark
condensates, one can see that the term

∑
m0

q〈q̄q〉 on the
right-hand side of (34) is canceled by the corresponding
contribution on the right-hand side of (32). Equating the
right hand sides of (32) and (34),

Cg −
∑

q=u,d,s

m0
q〈q̄q〉 =

4B
(
χc

χ0

)4

− 2hσ

(
F0 − F 0

0

)2−
∑

q=u,d,s

m̄0
q〈q̄q〉, (36)

we obtain the correspondence

Cg = 4B
(
χc

χ0

)4

+
9∑

a,b=8

(µ̄0
a − µ0

a)(G
(−))−1

ab (µb − µ̄0
b)

−2hσ

(
F0 − F 0

0

)2
, (37)

where µ0
a = 0 (a = 1, . . . 7), µ0

8 = m0
u, and µ0

9 =
−ms/

√
2. This equation relates the gluon condensate,

whose value we take from other models (see, e.g., [9]),
to the model parameter B. The next step is to investigate
gap equations.

At this step, we introduce the new dilaton field χ′ =
χ − χc with zero vacuum expectation value. In the fol-
lowing calculations, the effective meson Lagrangian is ex-
panded in terms of χ′.

As usual, gap equations follow from the requirement
that the terms linear in σ and χ′ should be absent in the
effective Lagrangian:

δL̄
δσ8

∣∣∣∣ φ = 0
σ = 0
χ = χc

=
δL̄
δσ9

∣∣∣∣ φ = 0
σ = 0
χ = χc

=
δL̄
δχ

∣∣∣∣ φ = 0
σ = 0
χ = χc

= 0. (38)

This leads to the following equations:

(mu − m̄0
u)(G

(−))−1
88 − ms − m̄0

s√
2

(G(−))−1
89

−8muI
Λ
1 (mu) = 0, (39)

(ms − m̄0
s)(G

(−))−1
99 −

√
2(mu − m̄0

u)(G
(−))−1

98

−8msI
Λ
1 (ms) = 0, (40)

4B
(
χc

χ0

)3 1
χ0

ln
(
χc

χ0

)4

+
1
χc

9∑
a,b=8

µ̄0
a(G

(−))−1
ab (µ̄

0
b − 3µb)

−2hσ

χc

(
F0 − F 0

0

)2
= 0. (41)

Using (8) and (9), one can rewrite eqs. (39) and (40) in
the well-known form [7]:

m0
u = mu − 8GmuI

Λ
1 (mu)

−32KmumsI
Λ
1 (mu)IΛ

1 (ms), (42)

m0
s = ms − 8GmsI

Λ
1 (ms)− 32K(muI

Λ
1 (mu))2. (43)

To determine the masses of quarkonia and of the glue-
ball, let us consider the part of Lagrangian (20) which is
quadratic in fields σ and χ′ and which is denoted as L(2)

L(2)(σ, φ, χ′) = −1
2
g2u{[(G(−))−1

88 − 8IΛ
1 (mu)] + 4m2

u}σ2
u

−1
2
g2s{[(G(−))−1

99 − 8IΛ
1 (ms)] + 4m2

s}σ2
s

−gugs(G(−))−1
89 σuσs −

M2
gχ

′2

2

+
9∑

a,b=8

µ̄0
a

χc
(G(−))−1

ab gbσbχ
′

+
4hσ(F0 − F 0

0 )
χc

√
3

(
σs − σu

√
2
)
χ′, (44)
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Table 1. The masses of physical scalar meson states σI, σII,
σIII and the values of the parameters χc, χ0, bag constant B,
and (bare) glueball massMg (in MeV) for two cases: 1)MσIII =
1500 MeV and 2) MσIII = 1710 MeV.

σI σII σIII χc χ0 B(GeV4) Mg

I 400 1100 1500 206 190 0.009 1447
II 400 1100 1710 180 166 0.009 1665

where

M2
g =

1
χ2

c

(
4Cg +

9∑
a,b=8

µ̄0
a(G

(−))−1
ab (2µ̄

0
b − µb)

+
9∑

a,b=8

4µ0
a(G

(−))−1
ab (µb − µ̄0

b)

−hσ4F 2
0 + 4hσ(F 0

0 )
2

)
(45)

is the glueball mass before taking account of mixing ef-
fects. Here, the gap equations and eq. (37) are taken into
account.

From this Lagrangian, after diagonalization, we ob-
tain the masses of three scalar meson states: σI, σII, and
σIII, and a matrix of mixing coefficients b that connects
the nondiagonalized fields σu, σs, χ

′ with the physical ones
σI, σII, σIII:

σu

σs

χ′


 =


 bσuσI bσuσII bσuσIII

bσsσI bσsσII bσsσIII

bχ′σI bχ′σII bχ′σIII





 σI

σII

σIII


 . (46)

4 Model parameters and numerical estimates

The basic parameters of our model are G, K, Λ, mu, and
ms. After the dilaton fields are introduced, they keep their
values [5]:

mu = 280 MeV, ms = 420 MeV, Λ = 1.26 GeV,

G = 4.38 GeV−2, K = 11.2 GeV−5. (47)

Moreover, new three parameters χ0, χc, and B appear.
To fix the new parameters, one should use eqs. (37), (41),
and the physical glueball mass. As a result, we obtain for
χ0 and B:

χ0 = χc exp

{
−

[ 9∑
a,b=8

µ̄0
a(G

(−))−1
ab (3µb − µ̄0

b)

+2hσ

(
F0−F 0

0

)2
]/

4
[
Cg−(µ̄0

a−µ0
a)(G

(−))−1
ab (µb−µ̄0

b)

+2hσ

(
F0 − F 0

0

)2
]}
, (48)

B =
1
4

(
Cg−(µ̄0

a−µ0
a)(G

(−))−1
ab (µb−µ̄0

b)

+2hσ

(
F0 − F 0

0

)2
)(

χ0

χc

)4

. (49)

Table 2. Elements of the matrix b, describing mixing in the
scalar isoscalar sector. The upper table refers to the case σIII ≡
f0(1500), the lower one to the case σIII ≡ f0(1710).

σI σII σIII

σu 0.939 0.240 0.247
σs −0.214 0.968 −0.128
χ′ −0.270 0.067 0.960

σI σII σIII

σu 0.948 0.232 0.216
σs −0.216 0.971 −0.099
χ′ −0.233 0.047 0.971

We adjust the parameter χc so that the mass of the heav-
iest scalar meson, σIII, would be either 1500 MeV or 1710
MeV. The result of our fit for both cases is given in table 1.
One will also find the mixing coefficients in table 2.

5 Strong decays of scalar mesons

Once all parameters are fixed, we can estimate the decay
widths for the main strong decay modes of scalar mesons:
σl → ππ,KK, ηη, ηη′, and 4π where l = I, II, III.

Note that, in the energy region under consideration
(∼ 1500 MeV), we work on the brim of the validity of
exploiting the chiral symmetry that was used to construct
our effective Lagrangian. Thus, we can consider our results
as rather qualitative.

The vertices describing meson decays can be taken
from Lagrangian (20). Below we display only those neces-
sary to calculate the widths of the decays under consider-
ation:

L(3) = L
(3)
gl + L(3)

q + L(3)
an , (50)

L
(3)
gl = Ag

ππχ
′(2π+π−+ π0π0)

+Ag
KKχ

′(K+K−+K0K̃0)

+Ag
ηηχ

′ηη +Ag
σσχ

′σσ, (51)

L(3)
q = Auσu(2π+π−+ π0π0)

+Au
KKσu(K+K−+K0K̃0)

+As
KKσs(K+K−+K0K̃0) +Au sin θ̄2σuηη

+As cos θ̄2σsηη −Au sin 2θ̄σuηη
′

+As sin 2θ̄σsηη
′ +AuZ−1σ3

u, (52)

L(3)
an = Aan

φ sin2 θχ′ηη −Aan
φ sin 2θχ′ηη′

+Aan
σ χ

′σuσu, (53)

where L(3)
gl , L

(3)
q , and L

(3)
an contain the vertices describ-

ing decays of the pure glueball, pure quarkonia, and the
anomaly induced vertices describing pure glueball decays,
respectively.

The constants at the vertices in (51)–(53) are defined
as follows:

Ag
ππ = −M

2
π

χc
, Ag

KK = −2M2
K

χc
,
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Ag
ηη = −M

2
η

χc
, Ag

σσ = −M
2
σu

χc
, (54)

Au = 2gumuZ, As = −2
√
2gsmsZ,

Au
KK = 2guZ

(
mu+ms

2

(
Fπ

FK

)2

+
ms(mu−ms)
mu+ms

)
,

As
KK = −2

√
2gsZ

(
mu+ms

2

(
Fs

FK

)2

+
mu(ms−mu)
mu +ms

)
, (55)

Aan
φ = −2hφ

χc
, Aan

σ =
2hσ

3χc
, (56)

where θ̄ = θ − θ0, with θ being the singlet-octet mixing
angle in the pseudoscalar channel, θ ≈ −19◦ [8], and θ0
the ideal mixing angle, tan θ0 = 1/

√
2. The pion and kaon

weak decay constants are denoted as Fπ and FK , respec-
tively, and Fs = ms/(gs

√
Z) (see [8]).

Let us start with the lightest scalar isoscalar meson
state σI, associated with f0(400-1200). This state decays
into pions. This is the only strong decay mode, because σI

is too light for other channels to be open. The amplitude
describing its decay into pions has the form:

AσI→π+π− = 2Ag
ππbχ′σI + 2AubσuσI , (57)

where the coefficients bχ′σI and bσuσI represent the corre-
sponding elements of the 3 × 3 mixing matrix for scalar
isoscalar states (see table 2). The glueball and quarkonium
contributions have equal signs and increase the width of
σI.

The amplitude (57) leads to the following width of σI:

ΓσI→ππ =
3
2
ΓσI→π+π− ≈ 820 MeV , (58)

for σIII identified with f0(1500), and

ΓσI→ππ ≈ 830 MeV , (59)

for the case σIII ≡ f0(1710). The experimental value is
known with a large uncertainty and is reported to lie in
the interval from 600 to 1000 MeV [10].

The amplitude describing the decay of the state σII

that we identify with f0(980) into pions also consists of
two parts

AσII→π+π− = 2Ag
ππbχ′σII + 2AubσuσII . (60)

Here the glueball contribution is small again and the
quarkonium determines the decay width, however, in this
case both contributions are opposite in sign and slightly
compensate each other. For the decay width, we obtain

ΓσII→ππ ≈ 28 MeV, (61)

if σIII ≡ f0(1500) and

ΓσII→ππ ≈ 26 MeV, (62)

if σIII ≡ f0(1710). The experiment gives for the decay of
σII into pions a value lying within the range 30–70 MeV
[10].

Now let us proceed with decays of σIII. The process
σIII → π+π− is given by the amplitude

AσIII→π+π− = 2Ag
ππbχ′σIII + 2AubσuσIII (63)

that consists of two parts. The first part represents the
contribution from the pure glueball. This contribution is
small (since it is proportional to the pion mass squared),
and the process is determined by the second part that
describes the decay of the quarkonium component. As a
result, the width of the decay σIII → ππ if σIII ≡ f0(1500)
is

ΓσIII→ππ ≈ 14 MeV, (64)

and, if σIII ≡ f0(1710),

ΓσIII→ππ ≈ 8 MeV. (65)

In the case of KK̄ channels, the contribution of
the pure glueball is also proportional to the kaon mass
squared, and is rather large as compared to the pions case.
The amplitude of the decay σIII → K+K− consists of
three parts:

AσIII→K+K− = Ag
KKbχ′σIII +Au

KKbσuσIII +As
KKbσsσIII .

(66)
In the case when σIII is f0(1500), we have

ΓσIII→KK̄ = 2ΓσIII→K+K− ≈ 29 MeV, (67)

and in the other case (σIII ≡ f0(1710))

ΓσIII→KK̄ ≈ 60 MeV. (68)

The amplitude of the decay of σIII into ηη and ηη′ can
also be considered in the same manner. The only com-
plication is the singlet-octet mixing in the pseudoscalar
sector and additional vertices coming from∆Lan. The cor-
responding amplitude of the decay into ηη is

AσIII→ηη = 2Ag
ηηbχ′σIII + 2Au sin2 θ̄bσuσIII

+2As cos2 θ̄bσsσIII + 2Aan
φ sin2 θbχ′σIII . (69)

The decay widths thereby are, if σIII ≡ f0(1500),

ΓσIII→ηη ≈ 25 MeV, (70)

and, if σIII ≡ f0(1710),

ΓσIII→ηη ≈ 43 MeV. (71)

For the decay of σIII into ηη′, we have the following am-
plitude:

AσIII→ηη′ = −Au sin 2θ̄bσuσIII +As sin 2θ̄bσsσIII

−Aan
φ sin 2θbχ′σIII . (72)

The direct decay of a bare glueball into ηη′ is absent
here. The process occurs only due to the mixing of the
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glueball and scalar isoscalar quarkonia and the anomaly
contribution. The decay widths are as follows:

ΓσIII→ηη′ ∼ 10 MeV , (73)

for σIII ≡ f0(1500), and

ΓσIII→ηη′ ≈ 30 MeV , (74)

for σIII ≡ f0(1710). The estimate for the decay f0(1500)
into ηη′ is very rough, because the decay is allowed only
due to a finite width of the resonance as its mass lies a
little bit below the ηη′ threshold. The calculation is made
for the mass of f0(1500) plus its half-width. For f0(1710),
we have a more reliable estimate, since its mass is large
enough for the decay to be possible.

Up to this moment we considered only decays into a
pair of mesons. For the state σIII, there is a possibility to
decay into 4 pions. This decay can occur through inter-
mediate σ (f0(400-1200)) resonance.

The decay through the σ-resonances can be repre-
sented as two processes: with two resonances σIII → σσ →
4π and one resonance σIII → σ2π → 4π. The decay of a
glueball into two σ is given by the amplitude

AσIII→σσ ≈ 2Ag
σσbχ′σIII + 3Z−1AubσuσIIIbσuσI

bσuσI

+2Aan
σ bχ′σIIIb

2
σuσI

. (75)

The amplitude describing the decay into 2π+2π− through
two σ-resonances is

AσIII→σσ→2π+2π− = 2AσIII→σσA
2
σ→π+π−

×(∆σ(s12)∆σ(s34) +∆(s14)∆(s23)), (76)

where the function ∆σ(s) appears due to the resonant
structure of the processes

∆σ(s) = (s−M2
σI
+ iMσIΓσI)

−1, (77)

where ΓσI is the decay width of the σI resonance (see (58)
and (59)). This function depends on an invariant mass
squared sij defined as follows:

sij = (ki + kj)2, (i, j = 1, . . . , 4). (78)

Here i and j enumerate the momenta ki of pions π+(k1),
π−(k2), π+(k3), and π−(k4).

Now let us consider the decay into 4π through one
σ-resonance. The process is described by two vertices in
Lagrangian (20):

Ag
σ2πχ

′σu(2π+π− + π0π0) +Au
σ2πσuσu(2π+π− + π0π0),

(79)
and

Au
σIII→σ2π = −g2uZ, Ag

σ2π =
2muguZ

χc
(80)

are the glueball and quarkonia amplitudes. Thus, the am-
plitude describing this process is as follows:

AσIII→σ2π = 2Ag
σ2π(bσuσIbχ′σIII + bσuσIIIbχ′σI)

+4Au
σ2πbσuσIIIbσuσI . (81)

The glueball contribution prevails over the quarkonium
one in magnitude and is opposite in sign.

The amplitude describing the decay σIII → 2π+2π−
through one σ-resonance is

AσIII→σ2π→2π+2π− = −AσIII→σ2πAσ→π+π−

×(∆σ(s12)+∆σ(s34)+∆σ(s14) +∆σ(s23)) . (82)

The amplitudes for the decays into 2π0π+π− and 4π0

are calculated in a similar way (see [11] for details). As a
result, we obtain for σIII ≡ f0(1500) the following decay
widths:

ΓσIII→2π+2π− ≈ 2.2MeV, ΓσIII→2π0π+π− ≈ 1.2MeV,

ΓσIII→4π0 ≈ 0.1MeV. (83)

The total width of σIII is, therefore, Γ tot
σIII→4π ≈ 3.5MeV.

In the other case (σIII ≡ f0(1710)),

ΓσIII→2π+2π− ≈ 6MeV, ΓσIII→2π0π+π− ≈ 3.3MeV,

ΓσIII→4π0 ≈ 0.3MeV, (84)

and the total width is Γ tot
σIII→4π ≈ 10MeV. As one can

see, these values are very small. This is a result of strong
compensations between the glueball and quarkonia con-
tributions.

The other possibility of the state σIII to decay into 4
pions is to produce two intermediate ρ-resonances (σIII →
ρρ → 4π). Contrary to the decay through scalar reso-
nances, where strong compensations take place, in the
process with ρ-resonances, no compensation occurs, and
it turns out that the decay through ρ determines the most
part of the decay width of σIII.

To calculate the amplitude describing the process
σIII→ 2ρ, we need a piece of the Lagrangian with ρ-meson
fields. Although we did not consider vector mesons in the
source Lagrangian, an extended version of NJL model [8,
12] contains the vector and axial-vector fields. Taking the
mass term for ρ-mesons from [8,12] and including dilaton
fields into it according to the principle of scale invariance,
we obtain

M2
ρ

2

(
χ

χc

)2

(2ρ+µ ρ
−
µ + ρ0µρ

0
µ), (85)

where Mρ = 770 MeV is the ρ-meson mass. From this, we
derive the vertex describing the decay σIII → ρρ:

M2
ρ

χc
bχ′σIIIχ

′(2ρ+µ ρ
−
µ + ρ0µρ

0
µ). (86)

The decay of a ρ-meson into pions is described by the
following amplitude:

gρ(p1 − p2)µ , (87)

where gρ = 6.14 is the ρ-meson decay constant, p1 and p2
are the momenta of π+ and π−. Finally, we come to the
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Table 3. The partial and total decay widths (in MeV) of the
scalar meson states f0(400-1200), f0(980) and of the glueball
for two cases: σIII ≡ f0(1500) and σIII ≡ f0(1710), and exper-
imental values of decay widths of f0(1500) and f0(1710) [10].

f0(400-1200) f0(980) f0(1500) f0(1710)

Γππ 820 28 14 8
ΓKK̄ – – 29 60
Γηη – – 25 43
Γηη′ – – ∼ 10 30
Γ4π – – 140 ∼ 1000
Γtot 820 28 220 ∼ 1100
Γ exp

tot 600–1200 40–100 112 130

following formula for the amplitude of the process σIII →
ρ0ρ0 → 2π+2π−:

AσIII→ρ0ρ0→2π+2π− =
M2

ρg
2
ρbχ′σIII

χc

×
(
(s13 + s24 − s14 − s23)∆ρ(s12)∆ρ(s34)

+(s13 + s24 − s12 − s34)∆ρ(s14)∆ρ(s23)
)
. (88)

The function ∆ρ(s) is the following:

∆ρ(s) = (s−M2
ρ + iMρΓρ)−1. (89)

Here Γρ = 150 MeV is the decay width of the ρ-resonance.
The decay into 2π0π+π− occurs through a pair of charged
ρ-resonances: ρ+ and ρ−. The amplitude of this process is
the same as for the decay with intermediate ρ0. The decay
into 4π0 cannot go via ρ-resonances.

In an extended NJL model [8,12], there are no vertices
describing the decay of a quarkonium into ρ-mesons. As a
result, only the glueball part determines the decay of σIII

into 4 pions through ρ-resonances unlike the case with σ
resonances. This leads to a large decay rate through ρ-
mesons (contrary to decays through σ). As a result, we
obtain for the decay widths of σ → 4π via ρ-resonances if
σIII ≡ f0(1500):

ΓσIII→ρρ→2π+2π− ≈50MeV, ΓσIII→ρρ→2π0π+π− ≈90MeV,
(90)

with the total width Γ tot
σIII→4π ≈ 140MeV. In the other

case (σIII ≡ f0(1710)),

ΓσIII→ρρ→2π+2π− ≈ 350MeV,

ΓσIII→ρρ→2π0π+π− ≈ 650 MeV, (91)

and the total width Γ tot
σIII→4π ≈ 1GeV.

Now we can estimate the total width of the state σIII.
If σIII is identified with f0(1500), we have

Γ tot
σIII

≈ 220 MeV, (92)

which is in qualitative agreement with the experimen-
tal value 112 MeV [10], and, in the other case (σIII ≡
f0(1710))

Γ tot
σIII

≈ 1.2 GeV, (93)

exceeding the experimental value 130 MeV [10] by an or-
der. In the last case (f0(1710)), ρ-mesons can show up as
on-mass-shell decay products at large probability. The de-
cay width is estimated as ∼1 GeV. The absence of this
decay mode in experimental observations is a reason that
f0(1710) is not a glueball.

Our estimates for the decay widths of the scalar meson
states σI, σII, and σIII are collected in table 3.

6 Conclusion

In the approach presented here, we assume that (with the
exception of the dilaton potential and the ’t Hooft inter-
action) scale invariance holds for the effective Lagrangian
before and after SBCS in the chiral limit. On the other
hand, we take into account the effects of scale invariance
breaking that come from three sources: the terms with cur-
rent quark masses, the dilaton potential reproducing the
scale anomaly of QCD, and term Lan induced by gluon
anomalies (see (1) in the introduction).

The scale invariance breaking that is connected with
the term Lan was not taken into account in our previous
paper [1]. This led to a small quarkonia-glueball mixing
proportional to current quark masses, disappearing in the
chiral limit. If the term∆Lan is taken into account in (20),
the quarkonia-glueball mixing becomes much greater and
does not disappear in the chiral limit, being proportional
to constituent quark masses (quark condensates). This ac-
cords to the results obtained from QCD in [13]. This con-
tribution to the quarkonia-glueball mixing turns out to
have decisive effect on the strong decay widths of scalar
mesons.

For the scalar meson states f0(400-1200) and f0(980),
we obtain good agreement with experimental data [10].
Their decay widths are determined by quarkonium parts
of decay amplitudes.

Strong decays of the scalar meson state σIII (“glue-
ball”) are considered for two different masses: 1500 MeV
and 1710 MeV. In the ππ channel, the contribution from
quarkonia prevails over that from the glueball and thereby
determines the decay rate. In the case of KK, ηη, ηη′
channels, there are noticeable compensations among dif-
ferent parts of the decay amplitudes.

A similar situation with compensations takes place
in the decay of a glueball into 4π with intermediate σ-
mesons. Here we have a strong compensation between the
glueball and quarkonia contributions. But there is a possi-
bility for the state σIII to decay through ρ-resonances. In
this case, as the quarkonium component is absent, no com-
pensation occurs, and this channel determines the most of
the total decay width of σIII.

Our calculations are rather qualitative. However, they
allow us to conclude that f0(1500) is a scalar glueball
state, whereas f0(1710) is a quarkonium, for the following
reasons: 1) The total decay width of the glueball in our
model is in better agreement with experiment if f0(1500)
is assumed to be the glueball, rather than f0(1710). 2) As
follows from our calculations, the main decay mode of the
scalar glueball is that into four pions. This is true for the
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state f0(1500). A decay of f0(1710) into four pions, how-
ever, was not seen in experiment. 3) Moreover, a direct
decay into a pair of ρ-mesons on their mass shell would
be possible for f0(1710) if it was a scalar glueball. How-
ever, it was not seen. Our conclusion regarding f0(1710)
as a quarkonium state is in agreement with the conclu-
sion made in our papers [14]. Concerning the nature of
f0(1500), we are in agreement with those in [15].

We are going to use the approach developed in our fu-
ture work to describe all experimentally observed 19 scalar
meson states that lie in the energy interval from 0.4 to 1.71
GeV. We hope to identify them with two scalar meson
nonets (the ground and radially excited) and the scalar
glueball (f0(1500)).

We are grateful to Profs. A.A. Andrianov, D. Ebert and Drs.
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